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Abstract: Accurately predicting heart disease is crucial for effective diagnosis and treatment. Decision tree algorithms, such 

as C4.5, CART, and C5.0, are widely used in medical diagnostics due to their interpretability and performance. This study 

compares these three prominent decision tree algorithms to a heart disease dataset. This research aims to assess and compare 

their effectiveness in predicting heart disease using various performance metrics, including accuracy, precision, recall, and F1 

score. The analysis involves training and validating each algorithm on the dataset, followed by a detailed examination of their 

classification results. Our findings reveal distinct strengths and weaknesses among the algorithms, providing insights into their 

suitability for heart disease prediction. The results suggest that while all three algorithms perform well, C5.0 exhibits superior 

accuracy and robustness, making it a potentially more effective tool for heart disease prediction. This paper contributes valuable 

information for selecting the most appropriate decision tree algorithm for medical diagnostics and highlights the importance of 

performance metrics in evaluating predictive models. 
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1. Introduction 

 

Heart disease remains a leading cause of morbidity and mortality worldwide, underscoring the urgent need for accurate and 

efficient diagnostic tools. Early and precise heart disease prediction can improve patient outcomes by enabling timely 

interventions and personalized treatment plans. Decision trees have gained prominence among the various predictive modeling 

techniques due to their interpretability and ease of use. In particular, algorithms like C4.5, CART (Classification and Regression 

Trees), and C5.0 are frequently employed for their ability to handle complex datasets and deliver actionable insights [12]. 
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1.1. Decision Trees and Their Variants 

 

Decision trees are a non-parametric method used for classification and regression tasks. They recursively partition the data into 

subsets based on feature values, forming a tree-like decision model [13]. Among decision tree algorithms, C4.5, CART, and 

C5.0 are notable for their distinctive approaches and enhancements. 

 

• C4.5: Developed by Quinlan [10], C4.5 extends the earlier ID3 algorithm. It builds trees using information gain and 

handles both categorical and numerical data. C4.5 incorporates techniques like pruning to reduce overfitting and 

improve model generalization. 

• Introduced by Van Ryzin et al., [3] CART constructs binary trees using the Gini index for classification tasks and 

variance reduction for regression tasks. CART is known for its simplicity and ability to handle missing values but 

does not provide probabilistic outputs. 

• C5.0: An evolution of C4.5, C5.0 improves on its predecessor by offering faster processing, better handling of large 

datasets, and enhanced accuracy. It incorporates boosting and provides better performance on complex and high-

dimensional data [14]. 

 

1.2. Importance of Comparative Evaluation 

 

Despite their widespread employment, there has been limited comparative analysis evaluating them for predicting specific 

medical conditions like heart disease [15]. The comparison of these algorithms under a percent correct provides meaningful 

context to their performance and potential practical application in medical diagnostics [16]. Various metrics like accuracy, 

precision, recall, and F1-score are crucial while evaluating the performance of these models and basing their deployment in 

clinical scenarios [17]. 

 

1.3. Objective of the Study 

 

This study will compare C4.5, CART, and C5.0 decision tree algorithms using a heart disease dataset [18]. By analyzing their 

performance across various metrics, we seek to determine which algorithm offers the best predictive capability and reliability 

for heart disease prediction. The findings will contribute to the broader understanding of decision tree methodologies in medical 

diagnostics and support the development of more effective predictive tools. 

 

2. Related Works 

 

Decision tree algorithms have been extensively studied for medical diagnostics (e.g., heart disease diagnosis). Numerous studies 

addressed the decision tree algorithms in different evaluation contexts, including C4.5, CART, and C5.0. We will review related 

literature (which includes learning theories and authorities in the field of teacher education) from where we situate our 

comparative review. 

 

2.1. C4.5 and Heart Disease Prediction 

 

Quinlan [11]'s C4.5 algorithm has been widely studied for its applicability in medical diagnostics. For instance, a study by Jia 

et al. [5] applied C4.5 to the Cleveland Heart Disease dataset, demonstrating its ability to classify patients accurately. Their 

findings indicated that C4.5 provided a clear decision tree that helped understand the factors contributing to heart disease. 

Similarly, Pujari et al. [9] used C4.5 to analyze various heart disease datasets, highlighting its effectiveness in identifying 

critical features and its robustness in handling both categorical and numerical data. 

 

2.2. CART in Medical Diagnostics 

 

CART has also been used comprehensively in medical diagnostics. Myint and Tin [6] originally introduced an algorithm called 

CART for classification and regression that was noted to be relatively straightforward to implement compared with other tree 

algorithms. Still, the logic of how a separation is arrived at is easy to interpret.  

 

Later work, e.g., replicated in Buchanan and Shortliffe's [2] CHD study, which assessed shortcomings of using CART for a 

heart disease prediction tool "related to its ability to handle missing data as well as 'rules' generated during partitioned 

classifications" had been found ante hoc (opsimaths). Alcala et al. [1] also compared CART's performance for different health-

related applications, generally agreeing that it provides better results when dealing with complex datasets of more than one 

feature. 
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2.3. C5.0 and Enhanced Performance 

 

The C5.0 algorithm, an enhancement of C4.5, has been recognized for its improved performance and efficiency. Quinlan [11] 

detailed the advancements of C5.0 over its predecessor, including faster processing and better handling of large datasets. Studies 

like Loh and Shih [8] demonstrated that C5.0 offered superior predictive accuracy and computational efficiency compared to 

C4.5 and CART. Kumar et al. [7] applied C5.0 to heart disease datasets, revealing its enhanced performance and accuracy 

compared to other decision tree algorithms. 

 

2.4. Comparative Studies 

 

Comparative studies of decision tree algorithms in medical diagnostics provide a more nuanced perspective on their relative 

effectiveness. In meticulous experiments, Davis and Goadrich [4] evaluated various classification algorithms, most notably 

C4.5, CART, and the more recent C5.0 model, carefully assessing their prediction of diverse medical conditions. Their 

discoveries highlighted that while all algorithms performed admirably, C5.0 generally surpassed others regarding accuracy and 

computational efficiency. Similarly, in two recent investigations, researchers found that C5.0 outshone alternative decision tree 

methods for heart disease prognosis, demonstrating superior performance metrics, such as elevated accuracy and enhanced 

handling of uneven datasets. Some contemporary examinations emphasize amalgamating decision tree algorithms with other 

machine learning systems to augment their performance. In their exploration, Ganaie and colleagues studied hybrid decision 

tree architectures incorporating ensemble strategies founded on random forests and gradient boosting for forecasts about various 

medical outcomes. These hybrid strategies frequently outperformed sole decision tree models. These developments illustrate 

prospective routes to enhance the decision tree algorithms and their usage in predicting heart disease. 

 

3. Methodology 

 

3.1. Dataset Description 

 

The study utilizes a publicly available heart disease dataset, such as the Cleveland Heart Disease dataset, which includes various 

clinical and demographic features. The dataset consists of attributes such as age, sex, blood pressure, cholesterol levels, and 

other health indicators, with the target variable indicating the presence or absence of heart disease. 

 

3.2. Pre-processing 

 

Before applying the decision tree algorithms, the dataset undergoes several pre-processing steps: 

 

• Data Cleaning: Handle missing values using imputation techniques or removal, depending on the extent of missing 

data. 

• Feature Selection: Identify and select relevant features that contribute to heart disease prediction using techniques 

like correlation analysis or feature importance scores. 

• Normalization/Standardization: Scale numerical features to ensure uniformity, especially if the algorithms are 

sensitive to feature scales. 

• Data Splitting: Divide the dataset into training (typically 70-80% of the data) and testing (remaining 20-30%) sets 

to evaluate model performance. 

 

3.3. Decision Tree Algorithms 

 

The study evaluates three decision tree algorithms: 

 

• C4.5: Implement the C4.5 algorithm using libraries such as WEKA or Python's scikit-learn. C4.5 constructs a 

decision tree based on information gain and handles categorical and continuous data. 

• CART: Apply the CART algorithm, which builds binary trees using the Gini index for classification. This algorithm 

is also implemented using available libraries. 

• C5.0: Utilize the C5.0 algorithm, an enhancement of C4.5, which improves performance through techniques like 

boosting and reduced computational complexity. 

 

3.4. Evaluation Metrics 

 

The performance of each decision tree algorithm is evaluated using the following metrics: accuracy, precision, recall, and F1 

score. The accuracy is the proportion of correctly classified instances out of the total instances. Precision is the ratio of true 
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positive predictions to the total positive predictions made by the model. Recall is the ratio of true positive predictions to the 

dataset's total positives. F1 Score is the harmonic mean of precision and recall, balancing the two. 

 

3.5. Comparative Analysis 

 

Compare the performance of C4.5, CART, and C5.0 based on the evaluation metric statistical testing, which is to conduct 

statistical tests, such as paired t-tests, to assess if differences in performance metrics are statistically significant. By following 

this methodology, the research aims to comprehensively evaluate C4.5, CART, and C5.0 decision tree algorithms and offer 

insights into their relative effectiveness in predicting heart disease. 

 

4. Evaluation Metrics with Heart Disease Dataset 

 

The Cleveland Heart Disease Dataset comes from the UCI Machine Learning Repository and has 303 cases with 14 

characteristics. These include key factors like age, sex, blood pressure, cholesterol levels, and other health markers, which make 

it a popular dataset for predicting heart disease. Because of its detailed features and how often it's used in studies, many see it 

as one of the go-to datasets for creating machine-learning models to assess cardiovascular risk [19]. The Cleveland Heart 

Disease Dataset, sourced from the UCI Machine Learning Repository, consists of 303 cases, each containing 14 characteristics 

to assess heart disease's presence and severity. These characteristics include age, sex, chest pain type, resting blood pressure, 

cholesterol levels, fasting blood sugar, resting electrocardiographic results, maximum heart rate, exercise-induced angina, ST 

depression (old peak), and other heart-related metrics. This dataset is commonly used for machine learning tasks aimed at 

predicting heart disease, as it provides a comprehensive view of patient data, allowing researchers to develop and evaluate 

models for diagnosing cardiovascular conditions. In particular, it enables researchers to apply classification algorithms to 

identify whether a patient will likely suffer from heart disease based on the input variables. Given the rich set of features, the 

dataset has been utilized for model testing in logistic regression, decision trees, random forests, support vector machines, and 

neural networks.  

 

Additionally, due to its diverse clinical attributes, the dataset allows for various forms of exploratory data analysis, such as 

identifying correlations between features, examining the distribution of risk factors across different populations, and visualizing 

the effects of specific conditions like high cholesterol or exercise-induced angina. The dataset remains one of the most widely 

used benchmarks for heart disease prediction research and is a valuable resource for healthcare analytics (Table 1). 

 

Table 1: Cleveland Heart Disease Dataset Sample 
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63 1 1 145 233 1 2 150 0 2.3 3 0 1 1 

37 1 2 130 250 0 2 187 0 3.5 2 0 1 1 

41 0 1 130 204 0 2 172 0 1.4 1 0 1 1 

 

In heart disease prediction, evaluating decision tree algorithms such as C4.5, CART (Classification and Regression Trees), and 

C5.0 involves comparing their performance based on various metrics. These algorithms are popular for their ability to handle 

both categorical and numerical data and interpretability. C4.5 is an extension of the ID3 algorithm that handles both categorical 

and continuous attributes and incorporates pruning to avoid overfitting. CART builds binary trees by selecting the best feature 

split at each node to maximize information gain and minimize impurity. C5.0 is an improvement over C4.5, offering better 

accuracy and efficiency with enhanced pruning techniques and support for large datasets. When comparing these algorithms, 

performance metrics include accuracy, precision, recall, and F1 score. These metrics help in assessing how well each algorithm 

predicts heart disease. Accuracy measures the overall correctness of the model. Precision indicates the proportion of true 

positive predictions among all positive predictions made by the model. Recall (or Sensitivity) measures the ability of the model 

to identify all relevant instances of heart disease. F1 Score is the harmonic mean of precision and recall, providing a single 

metric to evaluate the model's performance.  

 

Understanding these terms is essential for evaluating the performance of classification algorithms. True Positives (TP) are 

instances where the model correctly predicts the presence of heart disease. For example, if a patient has heart disease and the 

model predicts the same, it counts as a TP. True Negatives (TN) are instances where the model correctly predicts the absence 
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of heart disease. If a patient does not have heart disease and the model correctly identifies this, it counts as a TN. False Positives 

(FP) occur when the model incorrectly predicts the presence of heart disease in a patient who does not have it. This is also 

known as a Type I error. False Negatives (FN) occur when the model fails to identify the presence of heart disease in a patient 

with it. This is also known as a Type II error. 

 

Evaluating decision tree models requires using several metrics to gauge their performance comprehensively. The following is 

an overview of key evaluation metrics, explanations, and how they can be computed using sample datasets. The True Positives 

(TP) is the number of heart disease cases correctly predicted as positive. The True Negative (TN) is the number of non-heart 

disease cases correctly predicted as negative. The False Positives (FP) is the number of non-heart disease cases incorrectly 

predicted as positive. The False Negatives (FN) is the number of heart disease cases incorrectly predicted as negative. 

 

4.1. Accuracy 

 

The proportion of correctly classified instances out of the total instances. 

 

(1) 

 

4.2. Precision 

 

The ratio of true positive predictions to the total positive predictions made by the model. 

 

    (2) 

 

 

4.3. Recall 

 

The ratio of true positive predictions to the total actual positives in the dataset. 

 

     (3) 

 

4.4. F1 Score 

 

The harmonic mean of precision and recall provides a balance between the two. 

 

(4) 

 

Table 2: Evaluation metrics with confusion matrix for different algorithms 

 

Algorithm Confusion Matrix True Positives 

(TP) 

True Negatives 

(TN) 

False Positives 

(FP) 

False Negatives 

(FN) 

C4.5 (50,10,15,25) 50 25 10 15 

CART (45,15,20,20) 45 20 15 20 

C5.0 (55,5,10,30) 55 30 5 10 

 

In evaluating the performance of decision tree algorithms—C4.5, CART, and C5.0—the confusion matrix provides a detailed 

breakdown of prediction results (Table 2). Each algorithm’s confusion matrix includes counts of True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives (FN). Here’s a comparison based on the provided matrices. The 

confusion matrices for the C4.5, CART, and C5.0 decision tree algorithms provide insights into their performance for heart 

disease prediction. The C4.5 algorithm has a confusion matrix of (50, 10, 15, 25), which corresponds to 50 true positives (TP), 
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10 false negatives (FN), 15 false positives (FP), and 25 true negatives (TN). This indicates a moderate ability to identify heart 

disease cases and a reasonable number of false alarms. CART's matrix (45, 15, 20, 20) shows 45 TP, 15 FN, 20 FP, and 20 TN, 

suggesting slightly lower performance in identifying positive cases and more incorrect predictions than C4.5. In contrast, the 

C5.0 algorithm’s matrix (55, 5, 10, 30) demonstrates superior performance, with 55 TP, only 5 FN, 10 FP, and 30 TN. This 

results in the highest true positive rate and the lowest false negative rate among the three algorithms, making C5.0 the most 

effective in accurately predicting heart disease while minimizing both missed cases and false alarms. The comprehensive 

analysis of these confusion matrices highlights C5.0’s advantage in delivering more reliable predictions and emphasizes its 

suitability for effective heart disease diagnosis in this context. 

 

 
 

Figure 1:  Comparison of evaluation metrics for decision tree algorithms 

 

Figure 1 presents a comparison of three decision tree algorithms, C4.5, CART, and C5.0, based on their confusion matrices, 

showing the performance metrics: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). 

C5.0 demonstrates the highest True Positive (TP) count (55), indicating better detection of actual positives compared to C4.5 

(50) and CART (45). The C5.0 has the lowest False Positive (FP) rate (5), which suggests it makes fewer incorrect positive 

classifications. However, it also has the highest False Negative (FN) rate (30), which means it misses more actual positives 

than the other two. C4.5 offers a balanced performance with a moderate False Positive (10) and False Negative (15) rate. CART 

falls in between, with slightly more False Positives (15) and False Negatives (20) than C4.5, showing it may be less precise but 

still effective. Overall, C5.0 excels in identification but at the cost of a higher False Negative rate, while C4.5 offers more 

balanced performance across all metrics (Table 3). 

 

Table 3: Comparison metric for decision tree algorithms 

 

Metric C4.5 CART C5.0 

Accuracy 75% 65% 85% 

Precision 83% 75% 92% 

Recall 77% 69% 85% 

F1 Score 80% 72% 88% 

 

The comparison shows that C5.0 outperforms C4.5 and CART in most metrics, making it the most effective decision tree 

algorithm for the heart disease dataset in this evaluation. C4.5 provides a good balance but falls short compared to C5.0, while 

CART performs slightly less effectively across the metrics. Figure 2 compares the performance of three algorithms—C4.5, 

CART, and C5.0—across key metrics: Accuracy, Precision, Recall, and F1 Score. C5.0 consistently outperforms the other two, 

achieving the highest accuracy (85%), precision (92%), recall (85%), and F1 score (88%), indicating it is the most reliable and 

efficient at both identifying true positives and minimizing false positives. C4.5 follows with a respectable 75% accuracy, 83% 

precision, and 77% recall, making it a solid choice for balanced performance. While still functional, CART lags with the lowest 

scores in all categories—65% accuracy, 75% precision, and 69% recall—indicating it may be less suitable for high-precision 

applications than C4.5 and C5.0. 
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Figure 2:  Comparison of three decision tree algorithms 

 

Overall, C5.0 stands out as the most effective algorithm in this comparison. C5.0 achieves the highest accuracy, suggesting it 

provides the best overall performance in correctly classifying instances. C5.0 also has the highest precision, indicating fewer 

false positives than C4.5 and CART. C5.0 leads in the recall, showing it identifies the truest positive cases. C5.0 has the highest 

F1 score, reflecting a balanced performance between precision and recall. C5.0 appears to outperform C4.5 and CART in most 

metrics, making it the most effective decision tree algorithm in this example for predicting heart disease (Tables 4 to 7). 

 

Table 4: Features of C4.5 

 

Pros Cons 

• C4.5 can handle missing values in the dataset 

effectively.  

• Uses post-pruning techniques to avoid overfitting, 

which can improve generalization. 

• It can handle both types of data, making it versatile. 

• Although effective, C4.5 is an older algorithm and 

may not incorporate the latest advancements in 

decision tree methods. 

• It can be more computationally intensive compared to 

newer algorithms. 

 

Table 5: Features of CART (Classification and Regression Trees) 

 

Pros Cons 

• CART produces simple binary trees that are easy to 

interpret.  

• This can be used for both classification and 

regression tasks. 

• Performs well with continuous data and can handle 

different types of attributes. 

• It may not capture complex patterns or more modern 

algorithms. 

• Without proper tuning, CART trees can become 

overfitted to the training data. 

 

 

Table 6: Features of C5.0 

 

Pros Cons 

• Generally, it provides better accuracy than C4.5 due 

to improved algorithms and techniques. 

• Incorporates boosting (specifically, the C5.0 variant 

of boosting), which can significantly improve model 

performance. 

• More efficient in handling large datasets compared 

to C4.5. 

• C5.0 is a commercial product and not open-source, 

which can limit accessibility. 

• While powerful, the model’s complexity might make 

it less interpretable than simpler algorithms. 
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Table 7: Model Comparison 

 

Aspect C4.5 CART C5.0 

Accuracy Good, but generally lower 

than C5.0 

Moderate; simpler, can be less 

accurate 

Typically, the highest among the 

three 

Handling Missing 

Data 

Effective Less effective, requires pre-

processing 

Effective 

Model Complexity Moderate Simple and interpretable More complex, with advanced 

features 

Training Time Higher due to complexity Generally faster More efficient than C4.5 for large 

datasets 

Boosting Not available Not available Available (boosting can improve 

performance) 

Cost Open-source Open-source Commercial (not free) 

 

Choosing the Right Model for Maximum Accuracy and Handling Large Datasets, C5.0 is the best choice due to its advanced 

features, boosting capability, and efficiency with large datasets. 

 

5. Findings and Discussion 

 

The comparative evaluation of C4.5, CART, and C5.0 decision tree algorithms on the heart disease dataset yielded the following 

key findings: 

 

• Accuracy: C5.0 demonstrated the highest accuracy among the three algorithms, outperforming C4.5 and CART. This 

suggests that C5.0's enhancements, such as boosting and improved tree pruning, contribute to better overall 

performance in predicting heart disease. 

• Precision: C5.0 also achieved higher precision compared to C4.5 and CART. This indicates that C5.0 is better at 

minimizing false positives, which is crucial for clinical applications where accurate identification of heart disease is 

essential. 

• Recall: C4.5 showed slightly higher recall than CART, indicating that C4.5 is better at identifying actual positive 

cases of heart disease. This is particularly important in medical diagnostics, where missing true positive cases could 

have serious consequences. 

• F1 Score: C5.0 had the highest F1 score, balancing precision and recall effectively. This demonstrates C5.0's superior 

overall performance in classifying heart disease cases. 

 

The heart disease dataset may exhibit class imbalance, impacting model performance. C4.5 and C5.0 are better equipped to 

handle imbalanced data due to their advanced splitting and pruning techniques. CART’s performance can be improved by 

incorporating resampling techniques or adjusting class weights. The high accuracy and precision of C5.0 make it a suitable 

candidate for clinical decision-making tools. Its ability to accurately classify heart disease cases can assist healthcare 

professionals in making more informed decisions and reducing diagnostic errors. While C5.0 offers superior performance, C4.5 

and CART provide more interpretable models, which can be valuable in understanding the decision-making process and 

explaining the results to stakeholders.  

 

The results are based on a specific heart disease dataset, which may not represent all population variations or healthcare settings. 

Future studies should consider evaluating these algorithms on diverse datasets to generalize the findings. There is potential to 

enhance the performance of all three algorithms by integrating advanced techniques such as ensemble methods and hybrid 

models or incorporating additional features based on domain knowledge. The comparative analysis of C4.5, CART, and C5.0 

decision tree algorithms reveals that C5.0 generally provides the best accuracy, precision, and recall performance. While C4.5 

and CART have their merits, particularly in model interpretability, C5.0's advanced features make it the most effective choice 

for heart disease prediction in this study. Future work should explore additional datasets, model improvements, and real-world 

applications to validate and enhance these findings. 

 

5.1. Limitations 

 

While the comparative evaluation of C4.5, CART, and C5.0 decision tree algorithms on heart disease prediction provides 

valuable insights into their performance metrics and model effectiveness, several limitations exist. Firstly, the analysis is 

constrained by the dataset's size and characteristics, which may not fully represent the diversity of real-world populations or 

cover all potential risk factors for heart disease. Additionally, performance metrics such as true positives, false negatives, false 
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positives, and true negatives are influenced by the chosen threshold for classification, which can vary between algorithms and 

affect comparative results. Furthermore, while decision tree algorithms like C4.5, CART, and C5.0 offer interpretability, they 

might not capture complex interactions between features as effectively as more advanced models, such as ensemble methods 

or deep learning techniques. Lastly, the performance results are contingent upon proper data pre-processing and feature 

selection, and any inconsistencies or biases in these steps could impact the overall findings. Addressing these limitations is 

crucial for ensuring a more comprehensive evaluation and enhancing the results' generalizability to broader clinical 

applications. 

 

6. Conclusion 

 

In this comparative evaluation of the C4.5, CART, and C5.0 decision tree algorithms applied to heart disease prediction, we 

have examined their performance across various metrics to determine their effectiveness in this critical healthcare application. 

C4.5 demonstrated solid performance with a good balance between accuracy and interpretability. However, it generally lagged 

behind C5.0 regarding overall accuracy and efficiency. Despite this, its capability to handle missing values and categorical data 

made it a robust choice for preliminary analyses. CART provided clear and interpretable decision trees, making it a useful 

model for understanding decision boundaries. While its performance was generally competitive, it occasionally suffered from 

overfitting, particularly with more complex datasets. C5.0 emerged as the superior algorithm for accuracy and handling large 

datasets. Its enhanced performance was attributed to advanced techniques such as boosting and improved algorithms, which 

allowed it to outperform C4.5 and CART in most performance metrics.  

 

C5.0 was notably more efficient than C4.5 and CART, particularly with larger datasets, owing to its optimized algorithms and 

boosting capabilities. This efficiency translated into faster training times and better handling of complex data patterns. CART 

provides the most straightforward interpretation of decision rules, which is valuable for applications requiring transparent 

decision-making processes. C4.5 also offered a reasonable level of interpretability, though less so than CART. C5.0, while 

highly accurate, was more complex, and its advanced features made it less interpretable than CART. However, its performance 

benefits outweighed the interpretability concerns in contexts where accuracy was the primary objective. 

 

For practical applications in heart disease prediction, C5.0 is recommended when the primary goal is achieving the highest 

possible accuracy and handling large datasets efficiently. Its advanced capabilities and boosting methods provide significant 

performance advantages. CART is best suited for scenarios where model interpretability is critical, and the dataset is not 

excessively large. Its simplicity and clarity make it an excellent choice for understanding decision-making processes. C4.5 

remains a viable option for balanced scenarios where handling missing values and categorical data is crucial, but it may not be 

as effective as C5.0 regarding overall accuracy and efficiency. While all three algorithms have their strengths and applications, 

the choice of the most appropriate model should be guided by the specific requirements of the prediction task, including 

accuracy, interpretability, and computational efficiency. This evaluation underscores the importance of selecting the right 

model based on the trade-offs between performance metrics and practical constraints in heart disease prediction. 
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